

2006 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown on every question

Total marks - 84

- Attempt Questions 1-7
- All questions are of equal value
- Start each question in a new writing booklet

Question 1 (12 marks) Use a SEPARATE writing booklet Marks

(a) Solve
$$\frac{5}{x-1} \le 2$$

- (b) A is the point (-2, -1), and B is the point (1, 5). Find the coordinates of the point P which divides AB externally in the ratio 5: 2.
- (c) Let P(x) = (x+2)(x-5)Q(x) + a(x+2) + b, where Q(x) is a polynomial and a and b are real numbers.

When P(x) is divided by (x + 2) the remainder is 5. When P(x) is divided by (x - 5) the remainder is 19.

- (i) What is the value of b?
- (ii) What is the remainder when P(x) is divided by (x + 2)(x 5)?
- (d) Evaluate $\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^2}} dx \text{ in terms of } \pi$

Qu	estion 2	(12 marks) Use a SEPARATE writing booklet	Marks
(a)	(i)	Show that $f(x) = x^4 - 5x - 8$ has a root between $x = 2$ and $x = 3$	1
	(ii)	Using an approximation of $x = 2.1$, use one application of Newton's method to find a better approximation for this root. Give your answer to two decimal places.	1

(b)

Let EGNLF be a circle such that EF = EG, EL meets FG at K and EN meets FG at M, as in the diagram. Let $\angle GEN = \alpha$ and $\angle EGF = \beta$.

- (i) Copy this diagram into your Writing Booklet
- (ii) Prove that $\angle GLN = \alpha$
- (iii) Prove that $\angle GLE = \beta$
- (iv) Prove that LKMN is a cyclic quadrilateral.
- (c) Use the binomial theorem to find the term independent of x in the expansion of x

$$\left(x^2 + \frac{4}{x}\right)^8$$

(d) Use the substitution
$$u = 1 + x$$
 to find $\int \frac{x}{\sqrt{1+x}} dx$

Question 3 (12 marks) Use a SEPARATE writing booklet Marks

(a) (i) By expanding the left hand side, show that

$$\sin(7x-4x) + \sin(7x+4x) = 2\sin 7x \cos 4x$$

2

2

Hence find $\int \sin 7x \cos 4x dx$

(ii)

(i) Show that
$$2\alpha + \beta = 0$$
 and $\alpha^2 \beta = -2$

(b) The equation $x^3 - kx + 2 = 0$ has roots α , α , and β .

2

(ii) Hence find the values of α , β and k.

2

- (c) A geometric series is given by $1 \tan^2 x + \tan^4 x \tan^6 x + \dots$ for $0 < x < \frac{\pi}{4}$
 - (i) Show that the limiting sum exists and is given by $Z = \cos^2 x$

2

(ii) Find the set of possible values of Z

Show that p-q=1+pq

Question 4 (12 marks) Use a SEPARATE writing bookle	t Marks
(a) Differentiate $e^{5x}(\log(x^2-3x+1))$	3
(b) Use the substitution $t = \tan \frac{\theta}{2}$ to solve the equation	3
$\sin \theta + \cos \theta = 1 \text{ for } 0 \le \theta \le 2\pi$	
(c) Two points $P(2ap,ap^2)$ and $Q(2aq,aq^2)$ lie on the parabolic	ola $x^2 = 4ay$
(i) Derive the equation of the tangent to the parabola at	2
(ii) Find the coordinates of the point of intersection T of parabola at P and Q.	the tangents to the 2
(iii) You are given that the tangents at P and Q in (ii) integrated at P and Q in (iii) integrated at P and P	ersect at an angle of $\frac{\pi}{4}$

Question 5 (12 marks) Use a SEPARATE writing booklet Marks

(a) Prove by mathematical induction that

 $1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + ... + n \times 2^{n-1} = 1 + (n-1)2^{n}$ for all integers $n \ge 1$

3

- (b) For the function $y = x + e^{-x}$
 - (i) Find the coordinates and nature of any stationary points on the graph of y = f(x) and show that the graph is concave upwards for all values of x.
 - (ii) Sketch the graph of y = f(x) showing clearly the coordinates of any turning points and the equations of any asymptotes.
- (c) A group consisting of 3 men and 6 women attends a prizegiving ceremony.
 - (i) If the members of the group sit down at random in a straight line, find the probability that the 3 men sit next to each other.
 - (ii) If 5 prizes are awarded at random to members of the group, find the probability that exactly 3 of the prizes are awarded to women if
 - (α) there is a restriction of at most one prize per person
 - (β) there is no restriction on the number of prizes per person 2

Question 6 (12 marks) Use a SEPARATE writing booklet

Marks

(a)

The above diagram represents a balloonist B, being sighted simultaneously by two different observers, C and D on level ground. C is due south of the balloon and D is due east of it. Let A be the foot of the perpendicular from the balloon to the ground. Then,

Let AD = x, AC = y, AB = h, $\angle CBD = \theta$, $\angle BDA = \alpha$, and $\angle ACB = \beta$, As indicated on the diagram.

(i) Show that $x = h \cot \alpha$ and obtain a similar expression for y.

1

(ii) Show that $\cos \theta = \frac{h^2}{\sqrt{\left(x^2 + h^2\right)\left(y^2 + h^2\right)}}$

2

(iii) Hence show that $\sin \alpha \sin \beta = \cos \theta$

2

Question 6 continued on Next Page

Question 6 (12 marks)

Use a SEPARATE writing booklet

Marks

- (b) Consider the function $f(x) = \frac{x-4}{x-2}$ for x > 2
 - (i) Show that f(x) is an increasing function for all values of x in its domain

2

(ii) Explain briefly why the inverse function $f^{-1}(x)$ exists

1

(iii) State the domain and range of $f^{-1}(x)$

- 2
- (iv) Find the gradient of the tangent to $y = f^{-1}(x)$ at the point (0,4) on it.
- 2

(12 marks)

Question 7

(a)	Find the value of x if $\log_{10}(x^2 + x) - \log_{10}(x + 1) = 2$	2

Marks

Use a SEPARATE writing booklet

- (b) Christine sets up a prize fund with a single investment of \$2000 to provide her School with an annual prize valued at \$144. The fund accrues interest at a rate of 6% per annum, compounded annually. The first prize is awarded one year after the investment is set up
 - (i) Calculate the balance in the fund at the beginning of the second year.
 - (ii) Let $\$B_n$ be the balance in the fund at the end of n years (and after the nth prize has been awarded).

 Show that $B_n = 2400 400 \times (1.06)^n$
 - (iii) At the end of the tenth year (and after the tenth prize has been awarded) it is decided to increase the prize value to \$200.

For how many more years can the prize fund be used to award the prize?

- (c) (i) Write out the binomial expansion of $x(1+x)^n$
 - (ii) Hence by differentiating $x(1+x)^n$, show $\sum_{r=0}^n (r+1)^n C_r = (n+2)2^{n-1}$

Mathematics Extension 1/Extension 2 Common Internal Examination, 2006.

SOLUTIONS:

Question 1 (12 marks) Use a SEPARATE writing booklet

Marks 3

2

2

2

$$\frac{5}{x-1} \le 2$$

$$5 \le 2x - 2$$

$$2x-2 \ge 5$$

$$2x \ge 7$$

$$x \ge \frac{7}{2}$$

1

$$x-1\neq 0$$
 $\therefore x\neq 1$

$$\therefore x < 1$$
 or $x \ge \frac{7}{2}$

(b)
$$x = \frac{(-2 \times 2 + 1 \times -5)}{-5 + 2}$$
 , $y = \frac{(-1 \times 2 + 5 \times -5)}{-5 + 2}$

1

(c) (i)
$$P(-2) = (-2 + 2)(-2 - 5)Q(x) + a(-2 + 2) + b = 5$$

$$\therefore b = 5$$

1

 $\lceil 1 \rceil$

(ii)
$$P(5) = (5 + 2) (5 - 5)Q(x) + a(5 + 2) + b = 19$$

$$\therefore 7a + 5 = 19$$

$$a = 2$$

$$\therefore$$
 divide by $(x+2)(x-5)$

$$P(x) = (x + 2) (x - 5)Q(x) + 2(x+2) + 5$$

$$\therefore$$
 remainder is $2x + 9$

1

(d)
$$\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-x^{2}}} dx = \left[\sin^{-1}\left(\frac{x}{2}\right)\right]_{1}^{\sqrt{3}}$$

$$= \left[\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\left(\frac{1}{2}\right)\right] = \frac{\pi}{6}$$
[2]

Ouestion 2 (12 marks) Use a SEPARATE writing booklet

Marks

1

(a)
$$f(2) = (2)^4 - 5(2) - 8 = -2$$

 $f(3) = (3)^4 - 5(3) - 8 = 58$

: f(2) < 0 and f(3) > 0

:. roots between 2 and 3

1

(ii)
$$f(2.1) = (2.1)^4 - 5(2.1) - 8 = 0.9481$$

 $f'(2.1) = 4(2.1)^3 - 5 = 32.044$

$$\therefore x = a - \frac{f(a)}{f'(a)} = 2.1 - \frac{0.9481}{32.044} = 2.07$$

(b)

- (ii) Join GL such that $\angle GLN = \angle GEN$ (angles at the circumference standing on the same arc GN are equal. Therefore $\angle GEN = \alpha$
- (iii) Since EF=EG. Therefore EFG is an isosceles triangle. Therefore $\angle EGF = \angle EFG = \beta$ Since $\angle GLE = \angle EFG$. (angles at the circumference standing on the same arc EG are equal. $\boxed{1}$ $\therefore \angle GLE = \beta$

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 1/Extension 2 Common Internal Examination, 2006.

(iv)
$$\angle NMK + \angle EMK = 180$$
 (straight line)
 $\therefore \angle NMK + (\alpha + \beta) = 180$ 1
 $\angle NMK + NLK = 180$ since $\angle NLK = \angle NLG + \angle GLK = \alpha + \beta$ 1

:. LKMN is a cyclic quadrilateral (opp angles of cyclic quad are supp)

(c)
$$\left(x^2 + \frac{4}{x}\right)^8 = {}^8C_r (x^2)^{8-r} \left(\frac{4}{x}\right)^8 = {}^8C_r (x^{16-2r}) \left(4^8 x^{-8}\right) = {}^8C_r \left(4^8\right) (x^{8-2r}) \quad \Box$$

$$\therefore (x^{8-2r}) = x^0$$

$$r = 4 \quad \Box$$

$${}^{8}C_{4}\left(4^{8}\right)\left(x^{8-2(4)}\right) = 4587520$$

(d)
$$\int \frac{u-1}{u^{\frac{1}{2}}} dx = \int \frac{u}{u^{\frac{1}{2}}} - \frac{1}{u^{\frac{1}{2}}} dx = \int u^{\frac{1}{2}} - u^{\frac{-1}{2}} dx$$

$$= \frac{2u^{\frac{1}{2}}}{3} - 2u^{\frac{1}{2}} + C$$

$$= \frac{2(1+x)^{\frac{1}{2}}}{3} - 2(1+x)^{\frac{1}{2}} + C$$

$$\boxed{1}$$

Question 3 (12 marks) Use a SEPARATE writing booklet

Marks

(a) (i)
$$\sin 7x \cos 4x - \sin 4x \cos 7x + \sin 7x \cos 4x + \sin 4x \cos 7x = 2 \sin 7x \cos 4x$$
 2

(ii)
$$\frac{1}{2} \int 2\sin 7x \cos 4x dx$$

$$\therefore \frac{1}{2} \left[\sin(7x - 4x) + \sin(7x + 4x) \right] + C$$

$$= \frac{1}{2} \int \sin 3x dx + \frac{1}{2} \int \sin 11x dx$$

$$= \frac{-1}{2} \times \frac{1}{3} \cos 3x + \frac{-1}{2} \times \frac{1}{11} \cos 11x$$

$$= \frac{-1}{6} \cos 3x - \frac{1}{22} \cos 11x + c$$

(b) (i)
$$x^3 - k\alpha + 2 = 0$$

$$\alpha + \beta + \gamma = \alpha + \beta + \alpha = \frac{-b}{a} \quad \therefore \quad 2\alpha + \beta = 0$$

$$\alpha\beta\gamma = \alpha\alpha\beta = \frac{-d}{a} \qquad \therefore \quad \alpha^2\beta = -2$$
 1

' Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 1/Extension 2 Common Internal Examination, 2006.

(ii)
$$x^3 - kx + 2 = 0$$
 $\beta = -2\alpha$, $\alpha^2 \beta = -2$ and $\alpha^2 + 2\alpha\beta = -k$ $\alpha^2 (-2\alpha) = -2 \Rightarrow -2\alpha^3 = -2 \Rightarrow \beta = -2(1)$ $\beta = -2\alpha \Rightarrow \beta = -2\alpha \Rightarrow$

Use a SEPARATE writing booklet Question 4 (12 marks)

 $\therefore -\frac{\pi}{4} < x < \frac{\pi}{4}$

Question 4 (12 marks) Use a SEPARATE writing booklet Mark

(a)
$$\frac{d}{dx} \Big[e^{5x} (\log(x^2 - 3x + 1)) \Big] = \Big[vu' + +uv' \Big] = \Big[\log(x^2 - 3x + 1) \times 5e^{5x} + e^{5x} \times \frac{2x - 3}{x^2 - 3x + 1} \Big]$$

$$= e^{5x} \Big[5\log(x^2 - 3x + 1) + \frac{2x - 3}{x^2 - 3x + 1} \Big]$$
(b) $\frac{2t}{1 + t^2} + \frac{1 - t^2}{1 + t^2} = 1 \implies 2t + 1 - t^2 = 1 + t^2 \implies 2t^2 - 2t = 0$

1

2

3

$$1+t^{2} \quad 1+t^{2} \qquad 2t+1 \quad t=1+t \qquad \dots 2t = 0$$

$$2t(t-1) = 0$$

$$\therefore t = 0 \quad and \quad t = 1 \qquad \boxed{1}$$

$$\therefore \tan \frac{\theta}{2} = 0 \quad and \quad \tan \frac{\theta}{2} = 1$$

$$\frac{\theta}{2} = 0, \pi, 2\pi, \frac{\pi}{4} \quad and \quad \frac{5\pi}{4}$$

$$\therefore \quad \theta = 0, 2\pi, 4\pi, \frac{\pi}{2} \quad and \quad \frac{5\pi}{2}$$

(c)(i)
$$x^2 = 4ay \implies \frac{dy}{dx} = \frac{2x}{4a} = \frac{x}{2a} = \frac{2ap}{2a} = p$$

$$\therefore m_{\text{tangent at p}} = p$$

$$\therefore y - ap^2 = p(x - 2ap)$$

$$y = px - ap^2$$

Kincoppal-Rose Bay, School of the Sacred Heart Mathematics Extension 1/Extension 2 Common Internal Examination, 2006.

(c)(ii) Tangent
$$P: y = px - ap^2$$

Tangent $Q: y = qx - aq^2$

$$\therefore \text{ Point of intersection} = px - ap^2 = qx - aq^2 \qquad \therefore x = a(p+q)$$

$$y = ap(p+q) - ap^2 \qquad \therefore y = apq$$

 \therefore Point of intersection (a(p+q), apq)

(c)(iii)
$$\tan 45 = 1 = \left| \frac{p - q}{1 + pq} \right|$$
$$\therefore 1 + pq = p - q$$

Question 5 (12 marks) Use a SEPARATE writing booklet

(a)
$$1 \times 2^0 + 2 \times 2^1 + 3 \times 2^2 + ... + n \times 2^{n-1} = 1 + (n-1)2^n$$

Step 1: Prove true for n=1

LHS=
$$1 \times 2^{1-1} = 1 \times 1 = 1$$

RHS=
$$1+(1-1)2^1 = 1+0=1$$

$$\therefore LHS = RHS \rightarrow true for n = 1$$

Step 2: Assume true for n=k

$$1.1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + ... + k \times 2^{k-1} = 1 + (k-1)2^{k}$$

Step 3: Prove true for n = k + 1

LHS =
$$1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + ... + k \times 2^{k-1} + (k+1) \times 2^{k+1-1}$$

= $1 + (k-1)2^{k} + (k+1) \times 2^{k}$
= $1 + 2^{k}(k-1+k+1)$
= $1 + 2^{k}(2k)$
= $1 + 2^{k+1}(k)$

RHS=
$$1+(k+1-1)2^{k+1} = 1+2^{k+1}(k)$$

$$\therefore LHS = RHS \rightarrow true \ for \ n = k+1$$

Step 4: Since true for n=k and n=k+1, then true for n=1, 2, 3, ... : true for $n \ge 1$

(b) (i)
$$\frac{dy}{dx} = 1 - e^{-x} = 0$$
 $\therefore -e^{-x} = -1$ $\Rightarrow e^{-x} = 1$ $\therefore \log 1 = -x$

$$\therefore x = 0$$

1

Stationary point (0, -1)

$$\frac{dy}{dx} = 1 - e^{-x} > 0 \qquad \text{when } x \to \infty \text{ then } \frac{dy}{dx} > 0$$

when
$$x \to -\infty$$
 then $\frac{dy}{dx} > 0$

$$\therefore y = x - e^{-x}$$

is concave up for all x values

1

2

1

Marks 3

2

1

2

y Intercept

A group consisting of 3 men and 6 women attends a prizegiving ceremony.

(i)
$$FFFFFMMMF$$

$$FFFFMMMFF$$

$$FFFMMMFFF$$

$$FFMMMFFFF$$

$$FMMMFFFFF$$

$$FMMMFFFFF$$

$$AMMFFFFFF$$

$$AMMFFFFFF$$

$$AMMFFFFFF$$

$$\therefore P(3 \text{ men together}) = \frac{7 \times 3! \times 6!}{9!} = \frac{7 \times 3 \times 2 \times 6!}{9 \times 8 \times 7 \times 6!}$$
$$= \frac{6}{72} = \frac{1}{12}$$

(ii)
$$(\alpha)$$
 ${}^{6}C_{3} \times {}^{3}C_{2}$ $\boxed{1}$ $\frac{{}^{6}C_{3} \times {}^{3}C_{2}}{{}^{9}C_{5}} = \frac{60}{126} = \frac{10}{21}$ $\boxed{1}$ $\frac{10}{21}$

- (ii) (β)
- ${}^5C_3 \times \left(\frac{6}{9}\right)^3 \left(\frac{3}{9}\right)^2$
- 1

- $10 \times \frac{8}{27} \times \frac{1}{9} = \frac{80}{243}$
- 1

Ouestion 6 (12 marks)

Use a SEPARATE writing booklet

Marks

2

2

(b) Consider the function
$$f(x) = \frac{x-4}{x-2}$$
 for $x > 2$

(i)
$$f'(x) = \frac{vu' - uv'}{v^2} = \frac{(x-2)(1) - (x-4)(1)}{(x-2)^2} = \frac{2}{(x-2)^2}$$

$$f'(x) = \frac{2}{(x-2)^2} \quad \text{as } x > 2 \quad f'(x) > 0 \quad \therefore \text{ increasing for } x > 2 \quad \boxed{1}$$

(ii)
$$x > 2$$
 $\frac{2}{(x-2)^2} > 0$: increasing
$$x < 2 \quad \frac{2}{(x-2)^2} > 0$$
 : increasing

.. When use the horizontal line test it will only cut it once.

Therefore it has an inverse

1

(iii)
$$y = \frac{x-4}{x-2}$$

$$\therefore x = \frac{y-4}{y-2}$$

$$xy - 2x = y-4$$

$$xy - y = 2x-4$$

$$y(x-1) = 2x-4$$

$$y = \frac{2x - 4}{x - 1}$$

$$\therefore f^{-1}(x) = \frac{2x - 4}{x - 1}$$

$$Domain: x \in \square \quad except \ x = 1$$

Range: $y \in \square$ except y = 2

: gradient at
$$(0,4) = \frac{-0+2}{(0-1)^2} = \frac{2}{1} = 2$$

(a)

The above diagram represents a balloonist B, being sighted simultaneously by two different observers, C and D on level ground. C is due south of the balloon and D is due east of it. Let A be the foot of the perpendicular from the balloon to the ground. Then,

Let AD=x, AC=y, AB=h, $\angle CBD=\theta$, $\angle BDA=\alpha$, and $\angle ACB=\beta$, As indicated on the diagram.

Show that $x = h \cot \alpha$ and obtain a similar expression for y.

1.

(i)

$$\tan \alpha = \frac{h}{x}$$
and $\cot \alpha = \frac{x}{h}$

$$\therefore x = h \cot \alpha$$

$$in \square ABC$$
$$\cot \beta = \frac{y}{h}$$

 $\therefore y = h \cot \beta$

2

(ii) Show that
$$\cos \theta = \frac{h^2}{\sqrt{\left(x^2 + h^2\right)\left(y^2 + h^2\right)}}$$

$$\cos \theta = \frac{BC^{2} + BD^{2} - CD^{2}}{2(BC)(BD)}$$

$$\cos \theta = \frac{h^{2} + y^{2} + x^{2} + h^{2} - (x^{2} + y^{2})}{2\sqrt{(x^{2} + y^{2})\sqrt{x^{2} + y^{2}}}}$$

$$\cos \theta = \frac{2h^{2}}{2\sqrt{(x^{2} + y^{2})\sqrt{x^{2} + y^{2}}}}$$

$$\cos \theta = \frac{h^{2}}{\sqrt{(x^{2} + y^{2})\sqrt{x^{2} + y^{2}}}}$$

1

(iii) Hence show that $\sin \alpha \sin \beta = \cos \theta$

RTP

LHS:
$$\sin \alpha . \sin \beta$$

$$= \frac{h}{\sqrt{h^2 + x^2}} . \frac{h}{\sqrt{h^2 + y^2}}$$

$$= \frac{h^2}{\sqrt{(h^2 + x^2)(h^2 + y^2)}} \quad \boxed{1}$$

$$= \cos \theta$$

$$= RHS[1]$$

Question 7 (12 marks)

Use a SEPARATE writing booklet

Marks

2

1

(a)
$$\log_{10} \frac{x(x+1)}{x+1} = 2$$
 1 1 $\log_{10} x = 2$

$$x = 10^2 = 100$$

(b) (i)
$$B = 2000(1+0.06)^{1} - 144 = $1976$$

(ii)
$$2nd year = 2000(1.06)^1 - 144$$

$$3rd year = 2000(1.06)^2 - 144(1.06) - 144$$

4th year =
$$2000(1.06)^3 - 144(1.06)^2 - 144(1.06)^1 - 144$$

nth year =
$$2000(1.06)^n - 144(1.06)^{n-1} - \dots - 144(1.06)^1 - 144$$

= $2000(1.06)^n - 144 \left[(1.06)^{n-1} + (1.06)^{n-1} + \dots + 1 \right]$

$$=2000(1.06)^n-144\left[\frac{1(1.06^n-1)}{1.06-1}\right]$$

$$=2000(1.06)^n - \left[2400(1.06^n - 1)\right]$$

$$= 2000(1.06)^n - \left[2400(1.06^n) - 2400\right]$$

$$= 2400 + 2000(1.06)^n - 2400(1.06^n)$$

$$=2400-400(1.06)^n$$

At the end of the tenth year (and after the tenth prize has been awarded) it is decided to increase the prize value to \$120.

For how many more years can the prize fund be used to award the prize?

$$B_{10} = 2400 - 400 \times 1.06^{10}$$

$$B_{10} = 1683.66$$

$$A_{n} = 1683.66 \times 1.06^{n} - 200(1 + 1.06 + \dots + 1.06^{n-1})$$
When $A_{n} = 0$

$$1683.66 \times 1.06^{n} = 200(1 + 1.06 + \dots + 1.06^{n-1})$$

$$1683.66 \times 1.06^{n} = 3333.33(1.06^{n} - 1)$$

$$3333.33 = 3333.33(1.06^{n}) - 1683.66 \times 1.06^{n}$$

$$3333.33 = (3333.33 - 1683.66) \times 1.06^{n}$$

$$1.06^{n} = 2.02$$

$$n = \frac{\ln 2.02}{\ln 1.06} = 12.07$$

Hence after 10+12.07=22.07 years the prize ends.

(c) (i)
$$x(1+x)^{n} = x({}^{n}C_{0}(1)^{x}(x)^{0} + {}^{n}C_{1}(1)^{x-1}(x)^{1} + {}^{n}C_{2}(1)^{x-2}(x)^{2} + \dots + {}^{n}C_{n}(1)^{0}(x)^{n})$$
$$= {}^{n}C_{0}(1)^{x}(x)^{1} + {}^{n}C_{1}(1)^{x-1}(x)^{2} + {}^{n}C_{2}(1)^{x-2}(x)^{3} + \dots + {}^{n}C_{n}(1)^{0}(x)^{n+1} \qquad \boxed{1}$$

(ii) Differentiate LHS
$$x(1+x)^n$$

$$\frac{d}{dx}x(1+x)^n = (1+x)^n \cdot 1 + nx(1+x)^{n-1} = (1+x)^{n-1}(1+x+nx)$$

Differentiate RHS
$${}^{n}C_{0}(1)^{x}(x)^{1} + {}^{n}C_{1}(1)^{x-1}(x)^{2} + {}^{n}C_{2}(1)^{x-2}(x)^{3} + ... + {}^{n}C_{n}(1)^{0}(x)^{n+1}$$

$$\frac{d}{dx} {}^{n}C_{0}(1)^{x}(x)^{1} + {}^{n}C_{1}(1)^{x-1}(x)^{2} + {}^{n}C_{2}(1)^{x-2}(x)^{3} + ... + {}^{n}C_{n}(1)^{0}(x)^{n+1}$$

$$= {}^{n}C_{0} + 2{}^{n}C_{1}(x) + 3{}^{n}C_{2}(x)^{2} + 4{}^{n}C_{3}(x)^{3} + ... + (n+1){}^{n}C_{n}(x)^{n}$$

When x = 1

LHS=
$$(1+1)^{n-1}(1+1+n1) = (2)^{n-1}(n+2)$$

RHS = ${}^{n}C_{0} + 2{}^{n}C_{1} + 3{}^{n}C_{2} + 4{}^{n}C_{3} + ... + (n+1)^{n}C_{n} = \sum_{r=0}^{n} (r+1)^{r}C_{r}$

$$\therefore \sum_{r=0}^{n} (r+1)^{n} C_{r} = (n+2) 2^{n-1}$$